
We have taken a special interest in colors in recent times. Some of us can

even identify and name a couple of dozen different colors! The genesis for

this project was PriceWeave’s Color Analytics offering. With Color Analytics,

we provide detailed analysis in colors and other attributes related to retailers

and brands in Apparel and Lifestyle products space.

The Idea

The initial idea was to simply extract the dominating colors from an image

and generate a color palette. Fashion blogs and Pinterest pages are updated

regularly by popular fashion brands and often feature their latest offerings for

the current season and their newly released products. So, we thought if we

can crawl these blogs periodically after every few days/weeks, we can plot

the trends in graphs using the extracted colors. This timeline is very helpful

for any online/offline merchant to visualize the current trend in the market

and plan out their own product offerings.

We expanded this to include Apparel and Lifestyle products from eCommerce

websites like Jabong, Myntra, Flipkart, and Yebhi, and stores of popular

brands like Nike, Puma, and Reebok. We also used their Pinterest pages.

Color Extraction

The core of this work was to build a robust color extraction algorithm. We

developed a couple of algorithms by extending some well known techniques.

Extract dominant colors from an image with ColorWeave

4th Aug, 2015

B Y D ATAW E AV E

© DataWeave 2019 Page 1 of 4 pages

One approach we followed was to use standard unsupervised machine

learning techniques. We ran k-means clustering against our images data.

Here k refers to the number of colors we are trying to extract from the image.

In another algorithm, we extracted all the possible color points from the

image and used heuristics to come up with a final set of colors as a palette.

Another of our algorithms was built on top of the Python Image Library (PIL)

and the Colorific package to extract and produce the color palette from the

image.

Regardless of the approach we used, we soon found out that both speed and

accuracy were a problem. Our k-means implementation produced decent

results but it took 3–4 seconds to process an entire image! This might not

seem much for a small set of images, but the script took 2 days to process

40,000 products from Myntra.

Post this, we did a lot of tweaking in our algorithms and came up with a faster

and more accurate model which we are using currently.

ColorWeave API

We have open sourced an early version of our implementation. It is available

of github here. You can also download the Python package from the Python

Package Index here. Find below examples to understand its usage.

Retrieve dominant colors from an image URL

from colorweave import palette print palette(url="image_url")

Retrive n dominant colors from a local image and print as json:

print palette(url="image_url", n=6, output="json")

Print a dictionary with each dominant color mapped to its CSS3 color name

print palette(url="image_url", n=6, format="css3")

Print the list of dominant colors using k-means clustering algorithm

print palette(url="image_url", n=6, mode="kmeans")

© DataWeave 2019 Page 2 of 4 pages

https://github.com/jyotiska/colorweave
https://pypi.python.org/pypi/colorweave/0.1

Data Storage

The next challenge was to come up with an ideal data model to store the data

which will also let us query on it. Initially, all the processed data was indexed

by Solr and we used its REST API for all our querying. Soon we realized that

we have to come up with better data model to store, index and query the

data.

We looked at a few NoSQL databases, especially column oriented stores like

Cassandra and HBase and document stores like MongoDB. Since the details

of a single product can be represented as a JSON object, and key-value

storage can prove to be quite useful in querying, we settled on MongoDB. We

imported our entire data (~ 160,000 product details) to MongoDB, where

each product represents a single document.

Color Mapping

We still had one major problem we needed to resolve. Our color extraction

algorithm produces the color palette in hexadecimal format. But in order to

build a useful query interface, we had to translate the hexcodes to human

readable color names. We had two options. Either we could use a CSS 2.0

web color names consisting on 16 basic colors (White, Silver, Gray, Black, Red,

Maroon, Yellow, Olive, Lime, Green, Aqua, Teal, Blue, Navy, Fuchsia, Purple) or

we could use CSS 3.0 web color names consisting of 140 colors. We used

both to map colors and stored those colors along with each image.

Color Hierarchy

We mapped the hexcodes to CSS 3.1 which has every possible shades for the

basic colors. Then we assigned a parent basic color for every shades and

stored them separately. Also, we created two fields — one for the primary

colors and the other one for the extended colors which will help us in

indexing and querying. At the end, each product had 24 properties

associated with it! MongoDB made it easier to query on the data using the

aggregation framework.

What next?

A few things. An advanced version of color extraction (with a number of

other exciting features) is being integrated into PriceWeave. We are also

working on building a small consumer facing product where users will be able

to query and find products based on color and other attributes. There are

many other possibilities some of which we will discuss when the time is ripe.

Signing off for now!

Originally published at blog.dataweave.in.

- DataWeave Marketing

4th Aug, 2015

BRAND PERCEPTION

© DataWeave 2019 Page 3 of 4 pages

http://blog.dataweave.in/post/83478334651/extract-dominant-colors-from-an-image-with
https://dataweave.com/blog/author/marketing
https://dataweave.com/blog/year/2015
https://dataweave.com/blog/category/brand-perception

© DataWeave 2019 Page 4 of 4 pages

