
As successful businesses grow, they add a large number of people,

customers, tools, technologies, etc. and roll out processes to manage the

ever-increasingly complex landscape. Automation ensures that these

processes are run in a smooth, efficient, swift, accurate, and cost-effective

manner. To this end, Workflow Management Systems (WMS) aid businesses in

rolling out an automated platform that manages and optimizes business

processes at large scale.

While workflow management, in itself, is a fairly intricate undertaking, the

eventual improvements in productivity and effectiveness far outweigh the

effort and costs.

At DataWeave, on a normal day, we collect, process and generate business

insights on terabytes of data for our retail and brand customers. Our core

data pipeline ensures consistent data availability for all downstream

processes including our proprietary AI/ ML layer. While the data pipeline itself

is generic and serves standard workflows, there has been a steady surge in

customer-specific use case complexities and the variety of product offerings

over the last few years.

A few months ago, we recognized the need for an orchestration engine. This

engine would serve to manage the vast volumes of data received from

customers, capture data from competitor websites (which can range in

complexity and from 2 to 130+ in number), run the required data

transformations, execute the product matching algorithm through our AI
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systems, process the output through a layer of human verification, generate

actionable business insights, feed the insights to reports and dashboards, and

more. In addition, this engine would be required to help us manage the

diverse customer use cases in a consistent way.

As a result, we launched a hunt for a suitable WMS. We needed the system to

satisfy several criteria:

Ability to manage our complex pipeline, which has several integrations

and tech dependencies

Extendable system that enables us to operate with multiple types of

databases, internal apps, utilities, and APIs

Plug and play interfaces to execute custom scripts, and QA options at

each step

Operates with all cloud services

Addresses the needs of both ‘Batch’ and ‘Near Real Time’ processes

Generates meaningful feedback and stats at every step of the workflow

Helps us get away with numerous crontabs, which are hard to manage

Execute workflows repeatedly in a consistent and precise manner

Ability to combine multiple complex workflows and conditional branching

of workflows

Provides integrations with our internal project tracking and messaging

tools such as, Slack and Jira, for immediate visibility and escalations

A fallback mechanism at each step, in case of any subsystem failures.

Fits within our existing landscape and doesn’t mandate significant

alterations

Should support autoscaling since we have varying workloads (the system

should scale the worker nodes on-demand)

On evaluating several WMS providers, we zeroed in on Apache Airflow.

Airflow satisfies most of our needs mentioned above, and we’ve already

onboarded tens of enterprise customer workflows onto the platform.

In the following sections, we will cover our Airflow implementation and some

of the best practices associated with it.

DataWeave’s Implementation
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Components

Broker: A 3 node Rabbit-MQ cluster for high availability. There are 2 separate

queues maintained, one for SubDags and one for tasks, as SubDags are very

lightweight processes. While they occupy a worker slot, they don’t do any

meaningful work apart from waiting for their tasks to complete.

Meta-DB: MetaDB is one of the most crucial components of Airflow. We use

RDS-MySQL for the managed database.

Controller: The controller consists of the scheduler, web server, file server,

and the canary dag. This is hosted in a public subnet.

Scheduler and Webserver: The scheduler and webserver are part of the

standard airflow services.

File Server: Nginx is used as a file server to serve airflow logs and application

logs.

Canary DAG: The canary DAG mimics the actual load on our workers. It runs

every 30 minutes and checks the health of the scheduler and the workers. If

the task is not queued at all or has spent more time in the queued state than
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expected, then either the scheduler or the worker is not functioning as

expected. This will trigger an alert.

Workers: The workers are placed in a private subnet. A general-purpose AWS

machine with two types of workers is configured, one for sub-DAGs and one

for tasks. The workers are placed in an EC2-Autoscaling group and the size of

the group will either grow or shrink depending on the current tasks that are

executed.

Autoscaling of workers

Increasing the group size: A lambda is triggered in a periodic interval and it

checks the length of the RMQ queue. The lambda also knows the current

number of workers in the current fleet of workers. Along with that, we also

log the average run time of tasks in the DAG. Based on these parameters, we

either increase or decrease the group size of the cluster.

Reducing the group size: When we decrease the number of workers, it also

means any of the workers can be taken down and the worker needs to be

able to handle it. This is done through termination hooks. We follow an

aggressive scale-up policy and a conservative scale-down policy.

File System: We use EFS (Elastic File System) of AWS as the file system that

is shared between the workers and the controller. EFS is a managed NAS that

can be mounted on multiple services. By using EFS, we have ensured that all

the logs are present in one file system and these logs are accessible from the

file server present in the controller. We have put in place a lifecycle policy on

EFS to archive data older than 7 days.

Interfaces: To scale up the computing platform when required, we have a

bunch of hooks, libraries, and operators to interact with external systems like

Slack, EMR, Jira, S3, Qubole, Athena, and DynamoDB. Standard interfaces like

Jira and Slack also help in onboarding the L2 support team. The L2 support

relies on Jira and Slack notifications to monitor the DAG progress.

Deployment

Deployment in an airflow system is fairly challenging and involves multi-stage

deployments.

Challenges:

If we first deploy the controller and if there are any changes in the DAG,

the corresponding tasks may not be present in workers. This may lead to

a failure.

We have to make blue-green deployments as we cannot deploy on the

workers where tasks may still be running. Once the worker deployments

are done, the controller deployment takes place. If it fails for any reason,

both the deployments will be rolled back.

We use an AWS code-deploy to perform these activities.
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Staging and Development

For development, we use a docker container from Puckel-Airflow. We have

made certain modifications to change the user_id and also to run multiple

docker containers on the same system. This will help us to test all the new

functionality at a DAG level.

The staging environment is exactly like the development environment,

wherein we have isolated our entire setup in separate VPCs, IAM policies, S3-

Buckets, Athena DBs, Meta-DBs, etc. This is done to ensure the staging

environment doesn’t interfere with our production systems. The staging setup

is also used to test the infra-level changes like autoscaling policy, SLAs, etc.

In Summary

Following the deployment of Airflow, we have onboarded several enterprise

customers across our product suite and seen up to a 4X improvement in

productivity, consistency and efficiency. We have also built a sufficient set of

common libraries, connectors, and validation rules over time, which takes care

of most of our custom, customer-specific needs. This has enabled us to roll

out our solutions much faster and with better ROI. 

As Airflow has been integrated to our communications and project tracking

systems, we now have much faster and better visibility on current statuses,

issues with sub processes, and duration-based automation processes for

escalations. 

At the heart of all the benefits we’ve derived is the fact that we have now

achieved much higher consistency in processing large volumes of diverse

data, which is one of DataWeave’s key differentiators. 

In subsequent blog posts, we will dive deeper into specific areas of this

architecture to provide more details. Stay tuned!

- Rahul Ramesh 

Technical Architect at DataWeave, 13th May, 2020
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