

[This post was written by Dipanjan. Dipanjan works in the Engineering Team with Mandar, addressing some of the problems related to Data Semantics. He loves watching English Sitcoms in his spare time. This was originally posted on the **PriceWeave blog**.]

This is the second post in our series of blog posts which we shall be presenting regarding social media analysis. We have already talked about **Twitter Mining in depth** earlier and also how to **analyze social trends in general and gather insights from YouTube**. If you are more interested in developing a quick sentiment analysis app, you can check our **short tutorial** on that as well.

Our flagship product, PriceWeave, is all about delivering real time actionable insights at scale. PriceWeave helps Retailers and Brands take decisions on product pricing, promotions, and assortments on a day to day basis. One of the areas we focus on is "Social Intelligence", where we measure our customers' social presence in terms of their reach and engagement on different social channels. Social Intelligence also helps in discovering brands and products trending on social media.

Today, I will be talking about how we can get data from Twitter in real-time and perform some interesting analytics on top of that to understand social reactions to trending brands and products. In our last post, we had used Twitter's **Search API** for getting a selective set of tweets and performed some analytics on that. But today, we will be using Twitter's **Streaming API**, to access data feeds in real time. A couple of differences with regards to the two APIs are as follows. The Search API is primarily a REST API which can be used to query for "historical data". However, the Streaming API gives us access to Twitter's global stream of tweets data. Moreover, it lets you acquire much larger volumes of data with keyword filters in real-time compared to normal search.

Installing Dependencies

I will be using Python for my analysis as usual, so you can install it if you don't have it already. You can use another language of your choice, but remember to use the relevant libraries of that language. To get started, install the following packages, if you dont have them already. We use simplejson for JSON data processing at DataWeave, but you are most welcome to use the stock json library.

Acquiring Data

We will use the Twitter Streaming API and the equivalent python wrapper to get the required tweets. Since we will be looking to get a large number of tweets in real time, there is the question of where should we store the data and what data model should be used. In general, when building a robust API or application over Twitter data, MongoDB being a schemaless documentoriented database, is a good choice. It also supports expressive queries with indexing, filtering and aggregations. However, since we are going to analyze a relatively small sample of data using pandas, we shall be storing them in flat files.

Note: Should you prefer to sink the data to MongoDB, the mongoexportcommand line tool can be used to export it to a newline delimited format that is exactly the same as what we will be writing to a file.

The following code snippet shows you how to create a connection to **Twitter's Streaming API** and filter for tweets containing a specific keyword. For simplicity, each tweet is saved in a newline-delimited file as a JSON document. Since we will be dealing with products and brands, I have queried on two trending products and brands respectively. They are, 'Sony' and 'Microsoft' with regards to brands and 'iPhone 6' and 'Galaxy S5' with regards to products. You can write the code snippet as a function for ease of use and call it for specific queries to do a comparative study.

Let the data stream for a significant period of time so that you can capture a sizeable sample of tweets.

Analyses and Visualizations

Now that you have amassed a collection of tweets from the API in a newline delimited format, let's start with the analyses. One of the easiest ways to load the data into pandas is to build a valid JSON array of the tweets. This can be accomplished using the following code segment.

Note: With pandas, you will need to have an amount of working memory proportional to the amount of data that you're analyzing.

Once you run this, you should get a dictionary containing 4 data frames. The output I obtained is shown in the snapshot below.

<pre>In [70]: print {k:type(v) for k,v in data_frames.items()} {'iphone6': <class 'pandas.core.frame.dataframe'="">, 'sony': <class 'pandas.core.frame.dataframe'="">, 'galaxys5': <class 'pandas.core.frame.dataframe'="">, 'microsoft': <class 'pandas.core.frame.dataframe'="">}</class></class></class></class></pre>				
<pre>In [71]: print data_frames[</pre>	'sonv']			
<class 'pandas.core.frame.da<="" td=""><td></td></class>				
Int64Index: 34024 entries,	0 to 34023			
Data columns (total 27 colum				
contributors	0 non-null values			
coordinates	165 non-null values			
created_at	34024 non-null values			
entities	34024 non-null values			
extended_entities	5562 non-null values			
favorite_count	34024 non-null values			
favorited	34024 non-null values			
filter_level	34024 non-null values			
geo	165 non-null values			
id	34024 non-null values			
id_str	34024 non-null values			
in_reply_to_screen_name	2181 non-null values			
in_reply_to_status_id	1720 non-null values			
<pre>in_reply_to_status_id_str</pre>	1720 non-null values			
<pre>in_reply_to_user_id</pre>	2181 non-null values			
<pre>in_reply_to_user_id_str</pre>	2181 non-null values			
lang	34024 non-null values			
place	260 non-null values			
possibly_sensitive	34024 non-null values			
retweet_count	34024 non-null values			
retweeted	34024 non-null values			
retweeted_status	6629 non-null values			
source	34024 non-null values			
text	34024 non-null values			
timestamp_ms	34024 non-null values			
truncated	34024 non-null values			
user	34024 non-null values			
dtypes: bool(4), datetime64	[ns](1), float64(5), int64(5), object(12)			

Note: Per the Streaming API guidelines, Twitter will only provide up to 1% of the total volume of real time tweets, and anything beyond that is filtered out with each "limit notice".

The next snippet shows how to remove the "limit notice" column if you encounter it.

Time-based Analysis

Each tweet we captured had a specific time when it was created. To analyze the time period when we captured these tweets, let's create a time-based index on the created_at field of each tweet so that we can perform a timebased analysis to see at what times do people post most frequently about our query terms.

The output I obtained is shown in the snapshot below.

In [89]: print pt		
Brand \ Product	First tweet timestamp (UTC)	Last tweet timestamp (UTC)
galaxys5 iphone6 microsoft sony	2014-12-06 19:08:16 2014-12-06 18:38:07 2014-12-06 19:21:04 2014-12-06 19:31:15	2014-12-07 11:31:21 2014-12-07 11:31:22 2014-12-07 11:31:18 2014-12-07 11:31:15

I had started capturing the Twitter stream at around 7 pm on the 6th of December and stopped it at around 11:45 am on the 7th of December. So the results seem consistent based on that. With a time-based index now in place, we can trivially do some useful things like calculate the boundaries, compute histograms and so on. Operations such as grouping by a time unit are also easy to accomplish and seem a logical next step. The following code snippet illustrates how to group by the "**hour**" of our data frame, which is exposed as a datetime.datetime timestamp since we now have a time-based index in place. We print an hourly distribution of tweets also just to see which brand \ product was most talked about on Twitter during that time period.

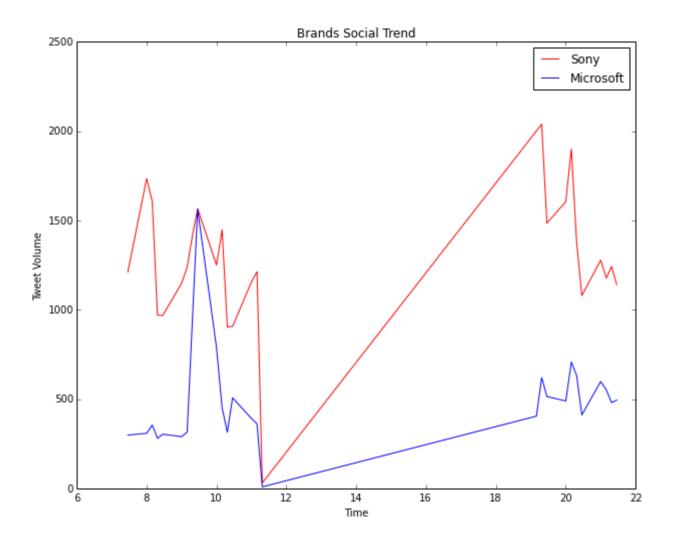
The outputs I obtained are depicted in the snapshot below.

Number of relevant tweets by the hour (UTC) for sony Number of relevant tweets by the hour (UTC) for microsoft					
		++ Tweet Distribution	Hour	Total Tweets	Tweet Distribution
7 8 9 10 11 19 20 21	1882 5278 5367 4508 2399 3524 5966 4838	* **** **** *** *** ***	7 8 9 10 11 19 20 21	497 1245 3111 2060 760 1538 2239 2123	* * * * * * * * * * * * *
22	262		22	103	

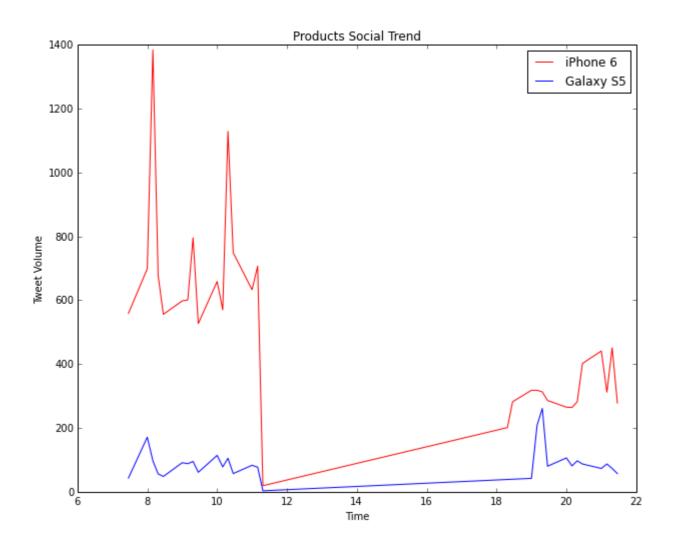
BRANDS TWEET DISTRIBUTION

PRODUCTS TWEET DISTRIBUTION

Number of r	elevant twee	ets by the hour (UTC) for iphone6	Number of relevant tweets by the hour (UTC) for galaxys5			
Hour To	tal Tweets	Tweet Distribution			Tweet Distribution	+
	810 3317 2522 3107 1359 483 1235 1213	******* ************************************	+ 7 8 9 10 11 19 20 21	74 372 335 354 163 591 371 290	**** *** *** * * * ***	+
21 22	1482 76	************	21	290	++ +	 +


The "**Hour**" field here follows a 24 hour format. What is interesting here is that, people have been talking more about **Sony** than **Microsoft in Brands**. In Products, iPhone 6 seems to be trending more than **Samsung's Galaxy S5**. Also the trend shows some interesting insights that people tend to talk more on Twitter in the morning and late evenings.

Time-based Visualizations


It could be helpful to further subdivide the time ranges into smaller intervals so as to increase the resolution of the extremes. Therefore, let's group into a custom interval by dividing the hour into 15-minute segments. The code is pretty much the same as before except that you call a custom function to perform the grouping. This time, we will be visualizing the distributions using matplotlib.

The two visualizations are depicted below. Ofcourse don't forget to ignore the section of the plots from after 11:30 am to around 7 pm because during this time no tweets were collected by me. This is indicated by a steep rise in the curve and is insignificant. The real regions of significance are from hour 7 to 11:30 and hour 19 to 22.

Considering brands, the visualization for Microsoft vs. Sony is depicted below. Sony is the clear winner here.

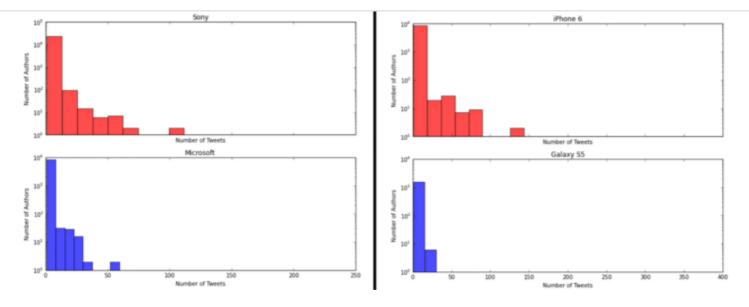
Considering products, the visualization for iPhone 6 vs. Galaxy S5 is depicted below. The clear winner here is definitely iPhone 6.

Tweeting Frequency Analysis

In addition to time-based analysis, we can do other types of analysis as well. The most popular analysis in this case would be frequency based analysis of the users authoring the tweets. The following code snippet will compute the Twitter accounts that authored the most tweets and compare it to the total number of unique accounts that appeared for each of our query terms.

The results which I obtained are depicted below.

BRANDS: TOP AUTHORS							
Most frequent (to	p 10) authors	of tweets fo	or sony	Most frequent (top	10) authors of	f tweets fo	or microsoft
+ Author	+ Tweet Count	+ +		+	Tweet Count	+	
ptoryy99 ticketdonichi	247			TutorialsBank MicrosoftReddit	147 98		
ps4ebay	105			UKXboxone	75		
<pre>xperia_sleeves HackAlertNews</pre>	100 75			PCSpam USXboxone	68 59		
<pre>rusifar1024 music_mycity</pre>	67 63			xboxwiips Popo_Kami	56 45		
kameraphoto_k CogGamingNews	60 60			ITSummary angelsaya1111	35 33		
amzngamestop	59	 +		bestopsoftb18	30		
There are 22989 u	nique authors	out of 34024	4 tweets	There are 8214 uni	que authors out	r t of 13676	tweets
		PROD	UCTS:	TOP RUTHOR	5		
Nost frequent (top	10) authors of	tweets for	galaxys5	Most frequent (top	0 10) authors of	f tweets f	or iphone6
Author	Tweet Count			Author	Tweet Count	ĺ	
Galaxy_Sleeves	292			iphone6_sleeves			
Galaxyebay	56 26			TheStarLover1 sekai58	143 126		
CellularDealsV				iPhone6_MNP	87		
FotishaBoos	19			haraguropink	87	İ	
GaryTinan	19			ITnews_NEW	87	İ	
Promo_high_tech	19			zarina_yunus	87	ĺ	
macline991	18			pink_haraguro	86		
MolanPoka90	15			Tumblryattt	86		
HDealsss	15			iPhone_6_Case	86		
++ There are 1517 unique authors out of 2578 tweets			+ There are 8497 uni	que authors out	+ t of 15604	tweets	


What we do notice is that a lot of these tweets are also made by bots, advertisers and SEO technicians. Some examples are Galaxy_Sleeves and iphone6_sleeves which are obviously selling covers and cases for the devices.

Tweeting Frequency Visualizations

After frequency analysis, we can plot these frequency values to get better intuition about the underlying distribution, so let's take a quick look at it using histograms. The following code snippet created these visualizations for both brands and products using subplots.

The visualizations I obtained are depicted below.

DATAWEAVE

The distributions follow the "Pareto Principle" as expected where we see that a selective number of users make a large number of tweets and the majority of users create a small number of tweets. Besides that, we see that based on the tweet distributions, Sony and iPhone 6 are more trending than their counterparts.

Locale Analysis

Another important insight would be to see where your target audience is located and their frequency. The following code snippet achieves the same.

The outputs which I obtained are depicted in the following snapshot. Remember that Twitter follows the ISO 639-1 language code convention.

DATAWEAVE

BRANDS			PRO	DUCTS	
Top 10 locales for sony			Top 10 local	les for ip	hone6
+	++ Tweets		+	+ Tweets	
en l	20888		ja	8016	
es	4025		en	4411	
ru	2881		in	1267	
ja ja	2163		de	425	
fr	856		fr	409	
pt	656		ar	286	
de	497		es	226	
in	488		tl	136	
it	181		th	128	
nl	172		und	82	
+	++			++	
Top 10 local	les for micr	osoft	Top 10 local	les for ga	laxys5
Language	Tweets		Language	Tweets	
en en	9193		en	1482	
ru	1469		es	355	
ja	766		ru	153	
es	560		ja ja	129	
fr	358		sk	102	
de de	272		in	99	
in	193		de	69	
sk	114		fr	50	
uk	97		pt	22	
und	93		tl	20	
+	++		+	++	

The trend we see is that most of the tweets are from English speaking countries as expected. Surprisingly, most of the Tweets regarding iPhone 6 are from Japan!

Analysis of Trending Topics

In this section, we will see some of the topics which are associated with the terms we used for querying Twitter. For this, we will be running our analysis on the tweets where the author speaks in english. We will be using the nltklibrary here to take care of a couple of things like removing stopwords which have little significance. Now I will be doing the analysis here for brands only, but you are most welcome to try it out with products too because, the following code snippet can be used to accomplish both the computations.

What the above code does is that, it takes each tweet, tokenizes it and then computes a term frequency and outputs the 20 most common terms for each brand. Ofcourse an n-gram analysis can give a deeper insight into trending topics but the same can also be accomplished with ntlk's collocations function which takes in the tokens and outputs the context in which they were mentioned. The outputs I obtained are depicted in the snapshot below.

```
DATAWEAVE
```

Analysis for Sony Most common terms: [(u'sony', 18439), (u'korea', 4738), (u'hack', 3817), (u'denies', 3786), (u'north', 3350), (u'playstation', 2930), (u'attack', 2067), (u'pictures', 1829), (u'4', 1764), (u'n', 1331), (u'new', 1262), (u'hacking', 1257), (u'ps4', 1248), (u"'righteous", 1247), (u'cyber', 1217), (u"deed'", 1216), (u"'righteous'", 1142), (u'#sony', 1101), (u'camera', 1070), (u'ebay', 1040)] Most common phrases: Building collocations list north korea; korea denies; 'righteous deed'; sony hack; denies 'righteous'; cyber attack; sony pictures; full read; 'righteous deed'; ebay price; denies hacking; skylight lets; project skylight; korea praises; @kat1sss 別; calvin harris; harris feat; wide (c); performing open; open wide Analysis for Microsoft Most common terms: [(u'microsoft', 7126), (u'#microsoft', 3492), (u'lumia', 1585), (u'get', 1477), (u'#lumia', 1343), (u'windows', 1320), (u'questions', 1213), (u'launch', 1197), (u'lot', 1195), (u'#windows10', 1187), (u'xbox', 1183), (u'working', 1180), (u'planning', 1177), (u'could', 1151), (u'rumors', 1138), (u'state', 1124), (u'1030', 1119), (u'successor', 1029), (u'#windowsphone', 853), (u'@microsoft', 837)] Most common phrases: Building collocations list rumors state; lumia 1030; #microsoft #lumia; #microsoft #windows10; successor of ...; windows 10....; microsoft could; launch windows; #windowsphone #microsoft; opinion piece; #windowsos #microsoft; @keemstarx today; #lizardsquad &; xbox 360; full read; xbox one; & @microsoft; #windows #os; ebay price; budget version

Some interesting insights we see from the above outputs are as follows.

- → Sony was hacked recently and it was rumored that North Korea was responsible for that, however they have denied that. We can see that is trending on Twitter in context of Sony. You can read about it here.
- → Sony has recently introduced Project Sony Skylight which lets you customize your PS4.
- → There are rumors of Lumia 1030, Microsoft's first flagship phone.
- → People are also talking a lot about Windows 10, the next OS which is going to be released by Microsoft pretty soon.
- → Interestingly, "ebay price" comes up for both the brands, this might be an indication that eBay is offering discounts for products from both these brands.

To get a detailed view on the tweets matching some of these trending terms, we can use nltk's concordance function as follows.

The outputs I obtained are as follows. We can clearly see the tweets which contain the token we searched for. In case you are unable to view the text clearly, click on the image to zoom.

Tweets for Sony talking about hack	Tweets for Microsoft talking about Lumia 1030
Building index	Building index
Displaying 25 of 3817 matches:	Displaying 25 of 1119 matches:
lhstwijhg0 maybe all data from first hack but now employees under attack ultra	ix it microsoft not working on lumia 1030 in the works http://t.co/q1cexxvfve
e upon a monster vita port sony sony hack families threatened 'make your compa	microsoft could be working on lumia 1030 the successor of http://t.co/an5ubx
lcedppe 'sonypocalypse' why the sony hack is one of the worst hacks ever http:	microsoft could be working on lumia 1030 the successor of http://t.co/p7pfgu
of princess beatrice leaked in sony hack - forbes http://t.co/gcta0v3oip #yph	microsoft could be working on lumia 1030 the successor of http://t.co/fdghpx
od studios boost security after sony hack http://t.co/uxyiz7kpl2 @darkwonders	microsoft could be working on lumia 1030 the successor of http://t.co/kd4xyx
od studios boost security after sony hack http://t.co/yzllnbyqvw rt @maximilia	microsoft could be working on lumia 1030 the successor of http://t.co/vobalp
password lessons after the 2011 psn hack (techdirt) http://t.co/cjmlnxgdai so	microsoft could be working on lumia 1030 the successor of http://t.co/ks8yog
mlnxgdai sony pictures entertainment hack employees' families threatened in la	microsoft could be working on lumia 1030 the successor of http://t.co/rhn5r2
hackers responsible for massive sony hack have send emails to several sony emp	microsoft could be working on lumia 1030 the successor of http://t.co/senplv
http://t.co/rvsie8xpwy sony pictures hack appears to be linked to north korea	microsoft could be working on lumia 1030 the successor of http://t.co/ztnovs
o port usf4 over too movie news sony hack reveals princess beatrice's salary h	microsoft could be working on lumia 1030 the successor of http://t.co/21a12g
hackers responsible for massive sony hack have send emails to several sony emp	microsoft could be working on lumia 1030 the successor of http://t.co/lcwg
ees http://t.co/dcznl1qnu4 #han sony hack signs point to north korea http://t.	microsoft could be working on lumia 1030 the successor of http://t.co/7k4h
for ps4 http://t.co/09wefftsf6 sony hack signs point to north korea http://t.	microsoft could be working on lumia 1030 the successor of http://t.co/6jyp
hackers responsible for massive sony hack have send emails to several sony emp	microsoft could be working on lumia 1030 the successor of http://t.co/wlaf
hackers responsible for massive sony hack have send emails to several sony emp	microsoft could be working on lumia 1030 the successor of http://t.co/ztky
on @thejournal_ie if north korea did hack sony it's a watershed moment in cy	microsoft could be working on lumia 1030 the successor of http://t.co/ojie
hackers responsible for massive sony hack have send emails to several sony emp	microsoft could be working on lumia 1030 the successor of http://t.co/8rvc
ore people get on psn sony's massive hack has given us an eerie peek behind th	microsoft could be working on lumia 1030 the successor of http://t.co/frri
ech new email from the sony pictures hack http://t.co/yvjepwpkrn sony smartwat	microsoft could be working on lumia 1030 the successor of http://t.co/kz9i
y first stage a350 abrege ubxow sony hack reveals princess beatrice's salary h	microsoft could be working on lumia 1030 the successor of http://t.co/znfn
o/azbv19esx1 #ps4 #cogps4 #sony sony hack reveals princess beatrice's salary h	microsoft could be working on lumia 1030 the successor of http://t.co/ttu1
mails\' sent to sony employees after hack #technology http://t.co/q6zm5hjiau @	microsoft could be working on lumia 1030 the successor of http://t.co/qe0a
there's gold in them hills! re:sony hack reveals top-secret profitability of	microsoft could be working on lumia 1030 the successor of http://t.co/wk3m
aio vpc-s12x9e/b notebook zbjjg sony hack reveals princess beatrice's salary h	microsoft could be working on lumia 1030 the successor of http://t.co/s7du

Thus, you can see that the Twitter Streaming API is a really good source to track social reaction to any particular entity whether it is a brand or a product. On top of that, if you are armed with an arsenal of Python's powerful analysis tools and libraries, you can get the best insights from the unending stream of tweets.

That's all for now folks! Before I sign off, I would like to thank Matthew A. Russell and his excellent book **Mining the Social Web** once again, without which this post would not have been possible. Cover image credit goes to TechCrunch.

Originally published at blog.priceweave.com

- DataWeave Marketing 9th Dec, 2014

BRANDS

DATA ENGINEERING